(DEPARTMENT OF DEFENCE DSTO
| DEFENCE SCIENCE & TECHNOLOGY ORGANISATION

Translating Deeply Structured
Information

Darryn J. Reid
DSTO-TR-0936

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20000504 025

Translating Deeply Structured Information

Darryn | Reid

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0936

ABSTRACT

The problem of interfacing Command, Control, Communications and Intelligence (C3I)
systems and applicable simulations is considered. In particular, this document focusses
on the requirements and design of an engine to support translation between systems
expecting to communicate using dissimilar message languages.

This engine interprets a given behavioural specification written in a high-level
declarative language built around standard SQL. It is therefore natural and convenient
to consider implementation using an appropriate relational database system to
facilitate data storage and manipulation.

Beginning with an overview of the broader context and background, the discussion
considers the way in which the semantic structures of the input and output languages
can be captured using a conceptual modeling language. Such models can be readily
mapped into a relational schema, and the actions that a translator should perform are
easily expressed using SQL. Each of these actions must occur when a given set of
conditions is satisfied; the engine is therefore a specialised rule-based system that
manipulates the tuples of a relational database.

RELEASE LIMITATION

Approved for public release

(DEPARTMENT OF DEFENCE DSTO
DEFENCE SCIENCE & TECANOLOGY ORANISATION

DTIC QUALITY IXCPDCTED

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australin 5108 Australia

Telephone: (08) 8259 5555

Fax: (08) 8259 6567

© Commonwealth of Australia 2000
AR-011-201

February 2000

APPROVED FOR PUBLIC RELEASE

Translating Deeply Structured Information

Executive Summary

Creating a virtual environment often involves constructing interfaces between systems
that were never designed to interact. These same fundamental barriers to
interoperability are observed whenever independently constructed information
systems are brought together to address some new organisational need. The focus here
is on systems that expect to communicate in discrete chunks of structured information
such as paragraphs or formatted messages.

At the core of any interface between a pair of such systems is the ability to manipulate
incoming information to generate appropriate structures that can be expressed in the
output language. The required behaviour of a translator to perform this function can be
derived from a suitable definition of the semantics of the input and output languages.
Object-Role Modelling (ORM) is used in this document to express the semantic
structures of either language; however, other suitable conceptual modelling paradigms
such as Entity-Relationship (E-R) diagrams could be employed instead.

The specification of the translator is most conveniently expressed as a set of rules, each
relating the information held by the translator at any moment to some actions that
should be subsequently performed. Such preconditions and actions can be readily
expressed using standard SQL; this is a direct result of the fact that models built using
ORM (or E-R diagrams) are readily mapped into relational database schemata. The
focus of this document is the design of a translator engine capable of interpreting any
set of such rules.

The rapid development of reliable interfaces to facilitate the interoperability of systems
that utilise different message languages can be achieved by employing a systematic
and rigorous approach to defining the exact nature of the interactions. A flexible and
reusable system for supporting this activity is proposed, in the form of a translator
engine to interpret a given behavioural specification at run-time.

Author

Darryn J Reid

Information Technology Division

Darryn] Reid completed the BSc and BscHons
degrees in mathematics and computer science from the
University of Queensland in 1991 and 1992
respectively, and received a PhD from the University
of Queensland in 1995. Darryn Reid joined DSTO as
a Senior Professional Officer Grade C in Information
Technology Division in 1995. In 1996 he became a
Research Scientist in Information Technology
Division, and joined Electronic Warfare Division as a
Senior Research Scientist in 1999.

Contents
1. INTRODUCTION AND OVERVIEW.ieirreteiccrericneeesssenesessessssssssesssansssssesessans 1
2. FIRST STEPS TOWARDS A SOLUTION....ccotieerrterenrrtrccrneeerrancrscsnsessssssssssssossarsossne 4
3. A TRANSLATOR ENGINE........eterieierrrrreecenrnreeseesssscssensaessessssassesssesssonsssssossossassssssssssns 6
4. SPECIFYING BEHAVIOUR .c.ooooooosioereersesssseosesesesesessssessssssssssesesessssssssssssssssssssssssssses 11
5. THE ENGINE IS A PRODUCTION SYSTEM.....oooooroeeorererresssssrssssesssssssssssssssssssees 17
6. SOME OTHER USEFUL TECHNOLOGIES.cccvevenrerssscsesssssssssmsssesesssmsssesssssssssen 21
APPENDIX A. THE RELATIONAL MODEL OF INFORMATION. ...ccccceeruerrsersssrscssans 23
APPENDIX B. AN OVERVIEW OF OBJECT-ROLE MODELLING.......curererursnnans 28
APPENDIX C. FROM ORM TO A RELATIONAL SCHEMAL.ccuvveiriccsersensecsosossensae 32

APPENDIX D. AN EXAMPLE TRANSLATOR SPECIFICATION.....cccccotserenueriresranenens 35

DSTO-TR-0936

1. Introduction and Overview

Consider the problem of constructing an interface between two independently
constructed systems that represent similar concepts, but communicate information
about these concepts in different forms [22]. Building a parser to decompose incoming
information and placing it in internal data structures is relatively easy; numerous
parser generator tools are available to assist in this task [1,2,7]. Likewise, composing an
output message from data held internally is really a programming exercise. While this
is not necessarily trivial to implement, this document focuses instead on how the
information in the incoming message stream can be manipulated to produce
information that can be used to build consistent and correct output messages. The
component of the interface that achieves this will be termed a ‘translator’, to emphasise
that it processes information according to its meaning, rather than just manipulating
pieces of data.

Imagine now that such a translator is to be implemented. How should this problem be
approached, and what kinds of operations will the translator need to perform? More
precisely, what methodology should be employed to specify how the translator should
operate? Can it be guaranteed that the meaning of information will be preserved in the
translation? What resource demands will such a project incur, in terms of the
programming effort required to realise an implementation? And, ultimately, what
support can be developed to alleviate the burden of implementing a new solution each
time the need to translate between different message streams is encountered?

To begin to develop some answers to these and other questions, suppose that a
translator to accept a stream of messages of one language and produce another stream
conforming to a different language is to be designed and programmed. Specifying the
behaviour of the translator demands some analysis of the two languages and
relationships between them [3,4,8-15,21,23-25]. That is, the meaning of the information
contained in all the messages of both languages must be expressed in some appropriate
manner; this is precisely what the conceptual modelling languages used in information
system design are intended to do [16,20].

One such way of capturing this kind of structural information is to use Object-Role
Modelling (ORM) language [18] for database conceptual schemata; this is an intuitively
appealing graphical method of expressing relationships between various domains of
data values. The process by which an ORM diagram is obtained will not be discussed
in detail here, other than to say that the result is a single model that describes the
semantic structure of information in the message types of both input and output
languages. Further information regarding schema design and issues in schema
integration is available elsewhere [3,8,10,12,14,15,17,19,21,23,24].

As an aside, most of the examples presented in this document operate implicitly within
the closed-world assumption, meaning that it is presumed that all relevant facts are
represented within the system. Addressing such concerns in database systems,
knowledge base systems, logic programming languages and automated reasoning is
still an active area of research [17], and no complete solution is currently known.

DSTO-TR-0936

Figure 1 below is an example ORM diagram that represents some of the information
about targets that both the ADFORMS and OTH-T Gold message formats used in
military C3I systems and simulations [5,6,26] can convey.

-
(1] Latnude
. al
Geographic C
[1] Ponon ®
L1} *
] T
) &
i
== Targer * ®
Tagortyoe Y| | o ranti, e] | ,
) Iz H
i
- T
—> | (IR
-,3- (] J—e(oswrine ®
s

- e
-~
Pennant
T
m &g
Chygun Coom PG
GEL. 715
713‘ G
>
Camn]
18

Figure 1: An example ORM schema.

Every message type of either format is described by a subset of the relationships
expressed on the ORM diagram. Given all of this information, designing the translator
amounts to finding sequences of operations that will transform sets of input messages
into sets of output messages. Each of these operations is an inference operation that
recombines some of the relationships defined on the schema to produce a new derived
relationship, and corresponds to an SQL query on a database that would implement
the conceptual schema. For example, suppose that it is known that certain countries
operate some classes of ships (Australia and New Zealand have ANZAC Frigates), as
shown in the schema fragment of Figure 2. Notice that there are no mandatory role
constraints, because this information may not be stored for all ship classes or all
countries.

Figure 2: A schema fragment.

Now consider an input message containing information about some ship, without
indicating its country of origin. The output message format, however, demands that a

DSTO-TR-0936

country (which may include the value ‘unknown’) be given for all targets. If it occurs
that the ship in question is of a class that only one country operates (for example, only
Australia possesses Collins class submarines), then the country can be inferred. An
SQL statement to determine the possible countries of origin might be

SELECT Country FROM ClassOperators WHERE ShipClass = ‘Collins’.

If this returns a relation containing a single value, then that value will be used as the
country code in the output message. If more than one value is returned, then the
country cannot be determined from the ship’s class alone.

Some sequences of derivations may be obvious, while others may be more difficult to
ascertain. Imagine that the input language does not explicitly indicate a suspicion code,
which is an indication of what kind of mission the target appears to be undertaking.
On the other hand, the output message format explicitly requires this information to be
provided. It is conceivable that the suspicion code for an aircraft, say, can be inferred
by a sequence of operations that relate the aircraft type, country of origin, position and
altitude, and the locations of other targets. Such inferences are not limited to being
deterministic; if the conceptual modelling language were a Bayesian belief network, for
instance, the determination of the suspicion code would be stochastic. Indeed, it is
possible to bury fuzzy and stochastic relationships within the ORM schema: some of its
relationships may represent complicated computations rather than explicitly stored
tuples.

The process of finding what operations should be performed is made even more
complex by the possible temporal separation of different pieces of information. That is,
information related with respect to the sequences of operations mentioned earlier
could be spread across several messages (of either or both of the input and output
languages).

To see this, consider the various ways in which the messages of the incoming stream
may map into output messages. Firstly, it is plausible that some kind of received
message might be best mapped into a single output message. This is the simplest
possibility, and the easiest to implement, in which all of the information in the input
message that can be expressed in the output language is contained within the single
outgoing message.

Alternatively, the input message might be broken into a corresponding set of several
output messages. This means that all of the information in the incoming message that
can be expressed in the output language is spread across a number of message types of
the output language. An example of this occurs in considering translating from OTH-T
Gold to ADFORMS: some forms of the Gold Contact Report message contain
information that ADFORMS disperses across several messages, including the Location
Report and Hostile Air Contact Report messages, among others.

Another possibility is the reverse of the second: information needed to build an output
message lies spread across several input messages. This is more difficult to implement,
as it requires information from incoming messages to be stored until all of the
information that is required by the output message is available. One situation in which

DSTO-TR-0936

this occurs is the reverse of the example given above, namely in translating from
ADFORMS to OTH-T Gold.

The general conclusion that can be drawn from all of these examples is that a system
for generating a translator must be able to consider ways of mapping any number 7 of
input messages into n messages of the output stream. In implementing this, the
translator must be capable of storing information for later use, without knowing if or
when the other required input messages will arrive. To make matters worse, it is
conceivable that more than one message type in the input language might provide
some of the information needed to produce the output.

The outcome of these observations is that the process of generating a translator should
focus on the current state of available knowledge at any moment during the
translator’s operation. In this way, a strategy can be devised that determines the next
action to take, in order that some measure of long-term performance is maximised.
This performance measure will describe the overall quality of the result of the
translator, in terms of the amount of information that is successfully delivered as

output messages.

Certainly, this implies the existence of a trade-off between the somewhat competing
requirements of rapid delivery of information and the completeness of that
information. Note that the translator engine itself is fully capable of supporting the full
range of decisions that might be contemplated, but in this discussion the focus will be
generally on providing output messages that are as complete as possible.

A further complication that can be observed in message formats such as OTH-T Gold
and ADFORMS is the overlap between different message types. That is to say, several
message types of either format can contain some of the same information. As a result,
the mapping from input stream to output stream is not unique, although certain
possible solutions might clearly be more desirable than others.

To support the process of constructing translators from a definition of the structural
relationships between the various data domains, some automated translator
development tool is required. The ultimate goal is to reduce or eliminate the need to
hard-code a solution every time an ability to convert between some pair of languages is
required.

2. First Steps Towards a Solution

In recognition of the complexity of the problem, a formulation as a sequential decision
process has been developed to support the automated generation of a translator from
the schema-level description of the relationships between the input and output
languages. The behaviour of the translator is mathematically described in terms of
sequences of actions each of which moves the system from one state of knowledge to
another. In constructing a translator, the objective is to discover such sequences for
which a measure of performance is maximal.

DSTO-TR-0936

It is fundamentally important to note that the operations that the on-line translator will
perform, and the algorithms used by the translator generator to specify these actions,
are ignorant of the actual data being processed. That is to say, the behaviour of the
translator is completely specified in terms of the conceptual schema representation of
the interface, not in terms of any individual data values that may arise during the
translator’s operation.

The translator maintains a database in which information is stored and manipulated.
This database is divided into two sections, one to represent the combined schema (or
the common subschema), and the another to contain derived relationships. The
structure of the first part of the database is fixed, although its data content might vary.
On the other hand, the derived relationships will be produced and discarded as the
result of actions taken by the translator.

The fixed component of the database will typically be instantiated with data specific to
the particular circumstances in which the translator is to operate. For example, some
scenario might involve certain vessels and aircraft, so the translator could be initialised
with potentially useful information about these specific entities. Some predefined
information of this variety that might be made available to the translator is shown in
Figure 3. Columns for which the title is underlined are keys, meaning that any value
can appear in that column at most once. In this case, either pennant number or name
uniquely identifies the particular vessel.

Pennant Number | Ship Name Ship Type Ship Class
02 Canberra FFG07 FFG
74 Farncomb Collins SSK
39 Hobart Charles F DDG
73 Collins Collins SSK
62 Otama Oberon SSK
05 Melbourne FFGO07 FFG

Aircraft Type Aircraft
[~ F/A8 F
F/A-18 A
Su-27M B
MiG-29 F
F-111 B

Figure 3: Some example predefined scenario data.

This represents a collection of relevant facts that are known prior to the actual
execution of the translator, and believed to be correct and complete. It is conceivable
that additional information of this kind could be collected while in operation and
stored for later reference; notice that it is the overall structure of this part of the
database that remains fixed, while its contents may be permitted to change.

The variable part of the database holds information temporarily while it is being
processed. As such, it is the schema-level structure of this component that defines the
current state of knowledge as perceived by the search algorithm. Because information

DSTO-TR-0936

from previous messages is encapsulated in the current state, the sequence of operations
to perform does not explicitly depend on the message received, but rather on what
information is available at that moment. This also gives the translator the ability to
remember unused information from messages received at an arbitrary time in the past.

The example in Figure 4 illustrates the kind of information that might be temporarily
held in the variable part of the database, at some instant. Information detailing the
location of two targets has arrived, and perhaps the ship types for each has been
derived from the ship names initially provided in the message. With further
processing, such as deriving the ship class from the ship type, or splitting the position
fields into latitude and longitude, these tables might be deleted.

Target Position Time

TVNG03 | 2345513245 | 04-0212347Z
VNG03 | 2346513250E | 04-060213Z
VP113 | 235251342E | 04-101341Z

Target Ship Type Country
VN603 FFGO07 AUS
VP113 Collins AUS

Figure 4: Some example data in temporary storage.

Upon receipt of a message, the parser injects the relevant information it contains into
the database. The translator will then perform some sequence of actions to manipulate
this information, sometimes resulting in the production of one or more output
messages. At other times, it may not be possible to produce any output until further
information is gathered from future incoming messages.

Information that is used in producing an output is removed from the variable part of
the database (discarded or sometimes shifted to the fixed part), while leftover
information that might be useful in constructing future messages is retained for later.
Such a mechanism is capable of remembering past input messages and, under the
control of the translator generator, planning for those that may occur in the future.

3. A Translator Engine

The mathematical description of the translator generator supports either off-line or on-
line implementations. In an off-line architecture, the translator generator would use the
schema-level description of the interface to generate some form of intermediate code,
which would then be executed by a run-time engine. The more general on-line option
combines the translator and the translator generator into a single unit that would be
also capable of minimising its response time (or some other measure of computational
performance) by learning about the costs of performing different sequences of
operations to achieve the same outcome.

DSTO-TR-0936

By separating the translator technology into a run-time engine and a build-time
translator generator, a significant new capability can be achieved, at greatly reduced
risk and with lower development demands. For instance, the engine can be constructed
independently, and in its own right would represent an enormous reduction in the
amount of code that would need to be written to realise a translator. That is, the
programmer would need only to specify a fairly high-level account of the behaviour
required of the translator, with the engine itself managing the details of how such
operations are performed. Because of this, an engine to support the receipt,
manipulation, and delivery of structured information will be the focus of the initial
stages of implementation.

A central issue in constructing the run-time engine is deciding upon the kinds of
manipulations that it should be empowered to perform. Rather than focussing on
database theory, a number of examples are presented here to illustrate the fundamental
ideas underpinning the proposed design.

Suppose that information is available that gives the pennant numbers observed for
some targets (see Figure 5). Note here that a particular ship might be reported by more
than one observer, which results in more than one target number being assigned to the
ship (this does occur in OTH-T Gold and ADFORMS messages). Information is also
available that relates pennant numbers (which are unique to each vessel in this
example) to other information about the particular ship in question.

Target Pennant
VN603 02
VP113 73
VM371 02
Vw292 39

Pennant Number Ship Name Ship Type Ship Class
02 Canberra FFG07 FFG
74 Farncomb Collins SSK
39 Hobart Charles F DDG
73 Collins Collins SSK
62 Otama Oberon SSK
05 Melbourne FFGO07 FFG

Figure 5: Some received information and predefined facts.

From this, it is possible to infer the ship name, ship type, and ship class that should be
associated with each target number, using the natural join operator of relational
algebra. The corresponding SQL for performing this operation might be

SELECT Target, PennantNumber, ShipName, ShipType, ShipClass FROM Targets, Ships
WHERE Targets.PennantNumber = Ships.PennantNumber.

The natural join matches the rows of the first table with those of the second for which
the specified columns have the same value. This undertaking corresponds to a

DSTO-TR-0936

transitive inference on the underlying functional dependencies (which are expressed in
the ORM diagram in terms of fact types and uniqueness constraints). In this case, the
result is the new table shown as Figure 6.

Target Pennant Number Ship Name Ship Type Ship Class
VN603 02 Canberra FFG07 FFG
VP113 73 Collins Collins SSK
VM371 02 Canberra FFG07 FFG
VW292 39 Hobart Charles F DDG

Figure 6: The result of the natural join.

Of course, it is possible that only a few columns from this table are of interest, in which
case the relational projection operator can be used to restrict the result. The natural join
and projection operators would typically be combined into a single SQL query:

SELECT Target, ShipType FROM Targets, Ships
WHERE Targets.PennantNumber = Ships.PennantNumber.

This produces instead a table containing only the ‘Target’ and ‘Ship Type’ columns,
supposing that this is the information needed in ultimately producing an appropriate
output message. The resulting relational table is illustrated below.

Target Ship Type
VN603 FFGO7
VP113 Collins
VM371 FFG07
VW292 Charles F

Figure 7: The result of projection and natural join.

Generalising this, the join of several tables will form a single table by combining
together related rows. The exact structure of the join is determined by the pattern of
relationships between the columns of all tables named in the query; in turn, the
conceptual schema specifies all such relationships between all the tables of the
database. That is to say, the list of all possible join queries that may be executed on a
given database is defined by the design of the database schema.

Briefly, virtually all database schemata are naturally acyclic (that is, nonrecursive) in
structure, and therefore almost every meaningful query will also be acyclic. Of these,
by far the most common query is the linear ‘chain query’, which follows some
referential path through the schema. To illustrate this, suppose that in some scenario
each ship has a different name, and this uniquely determines its pennant number. The
pennant number defines the class to which the ship belongs, and each ship class
belongs to a single type of vessel. The schema fragment describing this is shown below
in Figure 8; the referential path is clearly visible. In this illustration, a pennant number
also uniquely determines a ship’s name, establishing a one-one correspondence
between these entity types.

/‘\ <+« > > >

. Pennant . | .

{ Ship Name -. Number -. Ship Class i Ship Type
\ refers to .is of isa

Figure 8: A referential path of length 3.

DSTO-TR-0936

This structure would be realised as three tables in a relational database system (see
Figure 9, below). The referential relationships between each of the tables are described
in the relational data model as foreign keys; for instance, ‘Ship Class’ is said to be a

foreign key in the second table that refers to the third table.

Ship Name { Pennant Number
Canberra 02
Farncomb 74

Hobart 39
Collins 73
Otama 62
Melbourne 05
Pennant Number Ship Class
02 FFGO07
74 Collins
39 Chales F
73 Collins
62 Oberon
05 FFG07
Ship Class Ship Type
[Oberon SSK
FFG07 FFG
Collins SSK
Charles F DDG

Figure 9: Some tables of data corresponding to the schema of Figure 8.

The natural join of these three tables is a chain query and would produce exactly the
first table of Figure 3. To relate ship names only to ship types, this natural join
operation followed by a projection onto the ‘Ship Name” and ‘Ship Type’ attributes

would be used. In SQL, the query to retrieve this result might be

SELECT ShipName, ShipType FROM Ships, ShipsClasses, ClassesTypes
WHERE Ships.PennantNumber = ShipsClasses.PennantNumber
AND ShipsClasses.ShipClass = ClassesTypes.ShipClass.

DSTO-TR-0936

10

By far the most common activity of the translator will be realising inferences of this
nature. Nonetheless, more complex manipulations will also be needed. For example,
suppose that information is received that lists either the ship type or the aircraft type
for each target. Predefined information about the scenario lists the countries that
operate different ship types, and those that operate various kinds of aircraft. Note that
the second and third tables have composite keys, meaning that only combinations of
values in the underlined columns are unique. That is, a country can operate many
different ship or aircraft types, and a type of ship or aircraft can potentially be operated
by more than one country.

Target Target Type
VN603 FFGO7
VP337 MiG-29
vC717 F/A-18
VW292 Charles F
VA920 F-16
Ship T Count
Charles F AUS
FFG07 AUS
Charles F USA
Collins AUS
Aircraft Type | Country
F-111 AUS
F/A-18 USA
F/A-18 AUS
F/A-18 MAL
F-16 USA
MiG-29 MAL

Figure 10: An example for a more complicated inference.

The following query might be used to list the targets, target types, and country of
origin only for those targets for which the country can be unambiguously inferred. The
first part retrieves naval targets for which the number of possible countries of origin is
exactly 1, and the second part repeats the process for aircraft.

SELECT Target, TargetType, Country FROM Targets, ShipOperators
WHERE TargetType = ShipType
GROUP BY Target, Country HAVING COUNT (*) =1

UNION

SELECT Target, TargetType, Country FROM Targets, AircraftOperators
WHERE TargetType = AircraftType
GROUP BY Target, AircraftType HAVING COUNT (*) = 1.

DSTO-TR-0936

Note that other queries can be constructed to achieve the same outcome. The result of
this query executed for the example data is shown below, as Figure 11. In this case, the
country of origin can be inferred for only three of the listed targets, because the other
ship types and aircraft types of all the other targets are operated by more than one

country.

Target Target Type Country
VN603 FFG07 AUS
VP337 MiG-29 MAL
VA920 F-16 USA

Figure 11: Targets for which the possible country of origin is unique.

It remains to more completely embody these ideas about the kinds of operations that
the run-time engine should support. How these operations are expressed, together
with a framework to specify when particular operations should be invoked, will form
the basis of the intermediate code produced by the translator generator and interpreted
by the run-time engine.

4. Specifying Behaviour

Notice that entire sequences of relational operators can be described by one SQL query.
That is to say, what the translator generator regards as a whole sequence of relatively
simple actions can be potentially expressed as a few SQL statements. Indeed, when an
SQL query is submitted to a relational database management systems (RDBMS), it is
decomposed into a relational calculus expression (or something similar). Further
processing seeks to obtain a new expression for execution, equivalent to the original
but incurring significantly lower computational cost.

The variation in the demand placed on system resources by different ways of
expressing the query should not be under-estimated. Without even rudimentary query
optimisation, databases of even moderate size simply could not operate in the real
world. The problem of finding ways to execute transactions efficiently has attracted
enormous and intensive research attention.

For this reason, it makes sense for the behaviour of the run-time engine to be specified
using high-level constructs that can be easily expressed in SQL [16]. In this way, the
engine would submit complete SQL statements to the underlying database system, and
in doing so, take full advantage of the query optimisation that the transaction
management services offer. In this way, the translator generator can be largely free to
produce sequences of actions without too much regard for the computational costs
they would otherwise incur. The only overhead will be the need to compose such
action sequences into high-level statements after the translator generator proper has
completed its search.

11

DSTO-TR-0936

12

It is worth noting here that the query optimisation of the RDBMS is not a replacement
for the ability of an on-line translator generator to gather global information,
particularly in more sophisticated applications where the translator might have the
ability to use the services of various available information systems. The RDBMS can
only control the cost of individual queries, not the long-term operation of the translator
as a whole.

In the emerging picture, a user supplies a schema and possibly other information to a
translator generator, which produces as its output a specification of the behaviour of
the translator. This is presented to the engine at run-time, which utilises the services of
a database system to manipulate and store both temporary and predefined
information. Incoming messages are parsed, and the resulting information presented to
the engine, which places it in the database and initiates some processing which may
ultimately produce some tables that can be composed into one or more output
messages.

At this point, a reasonable description of the kinds of operations that the engine will
perform has been established. It remains to connect these operations with the
information in the database, by specifying a way of informing the engine about when
the specific actions should occur.

Perhaps the starting point in resolving this issue would be to consider specifying the
manipulations to be performed upon receiving each type of message. However, the
actions that should occur will depend not only on the message received, but also on
what has occurred in the past. This history is implicitly remembered as the information
currently in temporary storage, so the action to occur must depend on the received
message together with the current state of the database. Now remembering that the
content of an incoming message is injected into the database upon arrival, the current
state already embodies the new message at the moment when the engine will begin to
apply its operations.

That is to say, the engine will decide what action it should take by observing the
structure of the database immediately after the information from the new message has
been absorbed. To see how this works, consider an incoming message stream
consisting of two message types, one that specifies the position and time for a number
of targets, and the other that specifies the target’s type. Upon receiving the first of these
two messages, the state of the database might appear as shown in Figure 12.

Target Position Time

VN603 | 2345513245E | 04-021234Z
VN159 | 2346S13250E | 04-060213Z
VP717 | 2353S513421E | 04-101351Z

Figure 12: The state after receiving the first message.

DSTO-TR-0936

At this point, no action can be taken to generate an output message, because the output
message stream consists of a single message type that requires longitude, latitude,
time, and target type. At this point, actions might be applied to derive the latitude and
longitude for each target, resulting in the replacement of the table of Figure 12 with the
new table of Figure 13.

Target | Latitude | Longitude Time

T VN603 23455 13245E 04-0212347
VN159 23465 13250E 04-060213Z
VP717 23538 13421E 04-101351Z

Figure 13: A new table derived to replace the first.

No further manipulations can be made, and still no output message can be produced.
However, some time later another message is received that contains information about
target type, in this case only for two of the targets. The database now contains the new
table of Figure 14 in addition to that of Figure 13.

Target | Target Type
VN603 Ship
VN717 Aircraft

Figure 14: Some new information arrives.

At this point, a natural join between the two tables produces a result that can be
packaged as an output message. That is, an operation can occur that uses the
information for targets numbered ‘VN603" and ‘VN717" to produce the table of
Figure 15.

Target | Target Type | Latitude | Longitude Time
VN603 Ship 23455 13245E 04-021234Z
VP717 Aircraft 2353S 13421E 04-101351Z

Figure 15: The result of the natural join.

Notice that the details of the location of target ‘VN159” were not used; that is to say, the
result of the join does not include a row for this value of the join attribute. Therefore,
the table of Figure 13 would be retained with just this single row, in the hope that a
message specifying the type of the target 'VN159” will arrive in the future. Finally, all
the rows of the table of Figure 15 would be removed (and therefore the table itself is
deleted) as they are used in composing the output message.

Now consider what might happen if the two input messages were received in opposite
order. Initially, information detailing each target’s type is injected into the database,
and the state at that moment consists solely of the table shown in Figure 14. No further
processing can be performed until the second message arrives, when the state also
includes the table in Figure 12. Now the operation to split position into latitude and
longitude can occur, replacing the table of Figure 12 with that of Figure 13. Once this is

13

DSTO-TR-0936

14

completed, the second operation can be performed to construct the result illustrated as
Figure 15.

Observe that the output message and the final state are the same irrespective of the
order in which the messages arrive. Furthermore, the operation to be performed at any
moment depends only on the current state of the database. It is also emerging that each
part of the specification for a translator will consist of more than just an SQL statement;
an action involves retrieving data through the query, inserting this into another table,
and removing related rows from some of the existing tables. Additional complications
such as information that is available implicitly through stored procedures may need to
be specifically supported in the engine.

Note that actions are not only performed when a new message arrives, but whenever
an available action is applicable. In this sense, the arrival of a new message is much like
performing some action: both merely result in a change in the state of the database. The
only difference is that actions are under the control of the engine, whereas receiving a
new message is an event that is imposed from outside. Generating an output message
is simply an action that removes information from the database without replacing it
with some derived fact. Indeed, the output message types will be declared to the
engine in exactly the same way as any other data manipulation.

The behaviour specification is highly declarative: it indicates what the engine should
do to translate incoming messages into the output language, rather than detailing how
this is to be achieved. Even without the translator generator, this offers a high-level
language for describing the translator in a reasonably natural way. The actions that the
engine will execute are formalised versions of statements such as ‘split the target’s
position into latitude and longitude’, ‘determine the latitude, longitude, time and type
of each target’, and ‘find the targets that have only one possible country of origin’.

The engine will accept a set of rules, each of which contains a precondition in the form
of a single query that describes the database state that must be attained for the rule to
fire, and a list of actions to modify the database. The example above would contain a
rule that generates the latitude, longitude, time, and type for some targets. The action
for this rule would be to insert any such tuples into another table, while eliminating all
rows from the source tables that contain a target that also appears in the result.

Consider the hypothetical rule shown below, which might be used to express the
derivation used in the example earlier to produce an output message. The data
modification statements to record the result and remove used information from the
source tables are executed for each row generated by the query. If the query returns no
rows, then no action is taken. Using a record of what tables are present in the database
at any time, the engine will not even bother to test the query unless all of its source
tables are known to exist and contain at least one tuple.

DSTO-TR-0936

DEFINE ExampleRule AS
SELECT Target, TargetType, Longitude, Latitude, Time FROM TargetLocations,
TargetTypes
WHERE TargetLocations.Target = TargetTypes.Target;
INSERT INTO Targets VALUES $Target, $TargetType, $Longitude, $Latitude, $Time;
DELETE FROM TargetLocations WHERE Target = $Target;
DELETE FROM TargetTypes WHERE Target = $Target;

END

In this example, special identifiers have been used to explicitly refer to the attributes of
the result of the query. In this way, the attribute ‘Target’ of the source table
‘TargetLocations’ is easily distinguished from the attribute ‘Target’ of the query result.
It is worth noting that it is not actually necessary to do this, because the actions are
automatically constrained to operate only within the context of the result of the query.
That is, the restriction to delete only rows that also appear somewhere in the query
result is implied, and the more concise form illustrated below might be considered
instead.

DEFINE ExampleRule AS

SELECT Target, TargetType, Longitude, Latitude, Time FROM TargetLocations,
TargetTypes

WHERE TargetLocations.Target = TargetTypes.Target;
INSERT INTO Targets VALUES Target, TargefType, Longitude, Latitude, Time;
DELETE FROM TargetLocations;
DELETE FROM TargetTypes;
END

This more sophisticated approach arguably loses in clarity what it gains in conciseness.
Most significantly, it places the demand on the engine’s rule compiler to generate the
appropriate restriction clause. In turn, this requires more effort to keep track of the
primary keys of the source tables and the query result. Therefore, to simplify efforts at
implementing the translator engine, explicit identifiers to refer to the attributes of the
query result will initially be used.

The run-time engine should also manage the creation and removal of tables, thereby
removing the need for such code to be explicitly written into the rules. Whenever an
insertion operation is encountered, the engine should first check its index to ensure
that the table being inserted into actually exists in the database. If not, then the engine
is responsible for first creating the table. Likewise, after deleting from a table, the
engine should also drop the table if it contains no tuples.

The example of Figure 10 presents a less trivial case, highlighting the need for the
engine to support not only a simple query as the precondition of a rule, but any SQL
statement that produces a single table. The union of two results produces a single table,

15

DSTO-TR-0936

16

so a rule to generate a table of information about those targets for which the country of
origin is unique might be as shown below.

DEFINE FindUniqueOwners AS
SELECT Target, TargetType, Country FROM Targets, ShipOperators
WHERE TargetType = ShipType
GROUP BY Target, Country HAVING COUNT (*) = 1
UNION
SELECT Target, TargetType, Country FROM Targets, AircraftOperators
WHERE TargetType = AircraftType
GROUP BY Target, Country HAVING COUNT (*) = 1;
INSERT INTO TargetCountry VALUES $Target, $TargetType, $Country;
DELETE FROM Targets WHERE TargetType = $TargetType;

END

This example could be broken down into separate stages, by computing target data for
ships and for aircraft separately, and then counting the number of rows relating to each
target in another rule. This results in three simpler rules equivalent to the single rule
above. Notice how deletion of the tuples in the ‘Targets’ relation is delayed until after
both the first and second rules have been applied, ensuring the correct response when
a ship type and an aircraft type have the same name.

DEFINE FindShipOwners AS
SELECT Target, ShipType, Country FROM Targets, ShipOperators
WHERE TargetType = ShipType;
INSERT INTO TargetOwners VALUES $Target, $ShipType, $Country;
END

DEFINE FindAircraftOwners AS
SELECT Target, AircraftType, Country FROM Targets, AircraftOperators
WHERE TargetType = AircraftType;
INSERT INTO TargetOwners VALUES $Target, $AircraftType, $Country;
END

DEFINE FormTargetResutt AS
SELECT * FROM TargetOwners
GROUP BY Target, Country HAVING COUNT (*) = 1;
INSERT INTO TargetResult VALUES $Target, $TargetType, $Country;
DELETE FROM Targets WHERE Target = $Target;
END

The engine must also provide a mechanism for specifying that a table should be sent to
the composer, where it will be used to formulate an outgoing message. The engine

DSTO-TR-0936

would interpret some suitable non-SQL statement to mean that the resulting table
should be sent to a symbolically named composer, where the symbolic name might
correspond, say, to an IP address and port number. The idea behind the particular
construction presented here is that this new statement should resemble an SQL
insertion, in the interests of maintaining a consistent style throughout the rules.

DEFINE SendResultOff AS
SELECT * FROM TargetResult;
ACCEPT OutputComposer VALUES $Target, $TargetType, $Country;
DELETE FROM TargetResult;

END

Other language constructs will surely be needed in the future, as the language evolves
in the light of practical experience. In particular, some error handling and recovery
mechanisms will be necessary, particularly with regard to constraint violations that
faulty data might produce. This is an important subject for future work.

5. The Engine is a Production System

The engine instantiated with a behaviour specification is actually a production system,
whose rules manipulate entire tables of data, rather than just single rows at a time.

A production system contains a buffer listing all conditions that are currently true,
called the ‘context’; in the case of the translator engine, the context is a list of all the
tables currently in the database. An iteration of the algorithm starts by evaluating
production rules against the context, with those rules whose preconditions are satisfied
included in a ‘hit list’. If the hit list is not empty, one rule is chosen for evaluation
according to the conflict resolution strategy. Applying the rule will (normally) result in
changes to the context, and the process continues until the hit list is empty.

The contflict resolution strategy, whereby a single rule is selected for execution from the
hit list, is a fundamental issue. If the order in which the rules in the hit list (and any
subsequent rules that might be enabled) are executed has no impact on the ultimate
result, it does not matter how the engine selects from the hit list. The conflict resolution
strategy is significant only when firing rules in a different order can change the overall
behaviour of the system. Consider the two rules shown below.

DEFINE FindShipOwners AS
SELECT Target, ShipType, Country FROM Targets, ShipOperators
WHERE TargetType = ShipType;
DELETE FROM Targets WHERE TargetType = $ShipType;
INSERT INTO TargetOwners VALUES $Target, $ShipType, $Country;
END
DEFINE FindAircraftOwners AS
SELECT Target, AircraftType, Country FROM Targets, AircraftOperators

17

DSTO-TR-0936

18

WHERE TargetType = AircraftType;

DELETE FROM Targets WHERE TargetType = $AircraftType;

INSERT INTO TargetOwners VALUES $Target, $TargetType, $Country;

END

Suppose that these two rules are enabled at some moment, and that the table ‘Targets’
lists a target that could be either an aircraft or a ship. That is, suppose that some
aircraft type and some ship type happen to share the same name, and that there is a
target listed with this name as its type. The order in which these two rules are fired is
then significant; if ‘FindShipOwners’ is fired first, say, then this target will be removed
and therefore never processed by the ‘FindAircraftOwners’ rule.

The difficulty occurs because an intermediate result is required for more than one
production. Two better solutions appeared in the previous section, in which either all
the rules were combined into a single rule, or the delete statements were delayed until
a third rule collates the results. This shows how such difficulties occur simply as the
result of poor rule design.

Typical expert system shells [18,19], handle conflict in general by using some consistent
technique for choosing a single rule from the hit list, and the rule designer is
responsible for constructing the rule base with this particular choice in mind. Shortest
rule first, priority or salience values, ordering based on specificity of the precondition,
and random rule selection are all apparent in the expert system shells that are currently
available.

If the order in which enabled rules fire is significant in terms of the result produced,
this may represent poor rule design or inconsistency in the database. To address the
first case, a better design usually amounts to representing the relationships between
different rules explicitly in terms of additional facts in the database; indeed, an aim of
the conceptual design process is to precisely qualify all such relationships before any
rules are written. Proper representation and enforcement of database constraints,
especially referential integrity, manages the second possible cause by detecting such
inconsistencies as they occur.

Any use of priority or salience values to control rule execution is a practice to be
discouraged in building any rule-based system, and the translator is no exception. As a
result, no method for specifying priority weightings of any kind will be available.
Circumstances do arise, however, when it is highly desirable to be able to specify that
some rule can only be enabled after some set of other rules have first had a chance to
fire. This kind of need often arises when detecting and processing exceptional
conditions. For example, suppose that a ship can be identified either by its name or by
its pennant number. Ships for which a name is provided might be processed by a rule
such as

DSTO-TR-0936

DEFINE ProcessNamedShips AS
SELECT Target, Name, Class FROM ShipTargets, KnownVessels
WHERE ShipTargets.Name = KnownVessels.Name;
INSERT INTO VerifiedShipTargets VALUES $Target, $Name, $Class:
DELETE FROM ShipTargets WHERE Target = $Target;

END

Another rule might process any naval targets that instead identify the vessel by its
pennant number, deriving the name using some predefined information.

DEFINE ProcessNumberedShips AS

SELECT Target, Name, Class FROM ShipTargets,
KnownVessels

WHERE ShipTargets.Pennant = KnownVessels.Pennant;

INSERT INTO VerifiedShipTargets VALUES S$Target,
$Name, $Class;

DELETE FROM ShipTargets WHERE Target = $Target;
END

In this case, it is actually not that difficult to construct a third rule to handle the case
when neither the name nor the pennant number are provided or already exist in the
‘Known Vessels’ table. The action of the rule might be to record an error condition and
delete the offending rows, or perhaps to update the table of known vessels.

DEFINE ShipsException AS
SELECT Target FROM ShipTargets
WHERE Name NOT IN (SELECT Name FROM KnownVessels)
AND Pennant NOT IN (SELECT Pennant FROM KnownVessels);
WRITE ErrorLogFile ‘Cannot Identify Target ’ $Target;
DELETE FROM ShipTargets WHERE Target = $Target;
END

As the number of possible ways for the target to be identified increases, or as the
queries become increasingly complicated, it is easy to see that the rule to detect and
respond to the error would quickly become large and unwieldy. Even here, the query
of the exception-handling rule contains two sub-queries. Permitting some way of
specifying rule priorities leads to a more scalable and manageable solution.

Rather than introduce the ability to define priorities on rules, it is considered far better
to allow a rule to explicitly state that it cannot be fired unless every member of a set of
other rules is not currently enabled. This leads to an elegant and natural extension to
the rule syntax, as illustrated in the improved exception-handling rule shown below.

DEFINE NewShipsException :- ProcessNamedShips, ProcessNumberedShips AS
SELECT Target FROM ShipTargets
WRITE ErrorLogFile ‘Cannot Identify Target ’ $Target;

19

DSTO-TR-0936

DELETE FROM ShipTargets WHERE Target = $Target;
END
Note that the distinction between a rule being enabled and actually appearing in the hit
list is important here; checking each rule against the current hit list will produce
varying results depending on the order in which the rules are processed. That is to say,
an enabled rule should only be inserted into the hit list if none of the named rules in its
‘exclusion list” are also enabled.

A novel approach to conflict resolution that might be considered for the run-time
engine is a conglomerated kind of rule execution: the queries for all rules in the hit list
could be first evaluated, then all insertion statements could be performed, before any
deletions are carried out. To realise a scheme such as this, some record of the tuples
returned by each query precondition would be needed, perhaps in the form of a
number of temporary tables that are removed at the end of the execution cycle. This is
quite a radical departure from the traditional expert system shell. Because of this, it is
not likely that the first implementation of the run-time engine will visibly operate this
way, but the possibility should certainly be explored in the future.

A view of the overall architecture of the engine and its interfaces is provided as Figure

17. A behavioural specification provided by the user or the translator generator will be

parsed to construct the rule base, and to initialise the context to reflect the predefined

scenario dependent information in the database. At any moment, the context itself

contains information about the current structure of the database, including foreign

keys, subsets, exclusions, and other integrity necessary capabilities not directly |
supported in relational systems.

From User
or Translator
Generator

Behaviour Specification

e |
Interpreter l|_-iI:t

Context

W

ODBC Interface

3 B
; o

Input
Message
Stream

Input interface
Output Interface

Figure 17: Qverall architecture of the engine.

DSTO-TR-0936

During execution, incoming messages are parsed and the results submitted to the
engine through an input interface. The context is absorbs the new information, storing
it in the underlying database. At the heart of the engine lies the interpreter, which
examines the rule base with respect to the context to build a hit list of rules whose
preconditions are met. When a rule from the hit list is fired, the context directs
appropriate operations in the relational database to derive new relations, remove
applicable temporary tuples from existing relations, and delete any empty tables that
result.

At some moment, the context may satisfy the preconditions of a rule indicating that an
output message can be formulated. When such a rule appears in the hit list, the
interpreter directs the context to retrieve the specified information from the database
and send it through the output interface to a message composer. As with any other
rule, tuples in the result not marked as persistent will be subsequently removed from
the database. The input and output interfaces must simply facilitate the transmission of
relations named in the acceptance rule.

6. Some Other Useful Technologies

As described here, the run-time engine is built around a relational database system.
This choice is based on development considerations alone; the same underlying
principles could be equally applied with a different kind of data model in mind.

The relational model is not the only way to represent information in the engine. Some
of the deficiencies of relational products are due to the fact that they do not properly
support domains. If such support were implemented, an RDBMS could fully represent
subset hierarchies. Another important limitation from the point of view of the
translator engine is the presumption that all tables contain simple values. For example,
the relationship between position and its corresponding latitude and longitude cannot
be stored satisfactorily in a table of explicit values. Instead, a way of representing this
implicitly as stored procedures is needed.

Object-relational database management systems (ORDMS) blend features of object-
oriented database management systems (OODMS) and pure relational systems. In
doing so, they provide some of the advantages of object-orientation, while still
maintaining the strengths of relational databases. These emerging products provide
features such as declarative referential integrity, complex data types and subset
hierarchies, hierarchies of entire tables, and the ability to invoke methods and use their
return values as columns. Such systems also allow values in a column to be cast from
one type to another through predefined and user-defined casting operators.

Fully object-oriented databases are unlikely to be appropriate for implementing the
engine, as they focus on complex interactions and large data types, and do not properly
support the ad-hoc querying and data definition that the engine will require. It

21

DSTO-TR-0936

currently appears that an object-relational system would provide capabilities best
matched to the demands of the translator engine, but this would come at the possible
price of reduced portability.

22

DSTO-TR-0936

Appendix A. The Relational Model of Information.

A.1. Attributes, domains, tuples, and relations.

In the relational model of information, the database appears to the user or applications
programmer to be composed of some number of multidimensional tables, or
‘relations’. The format of a relation r is defined by its corresponding relation scheme R,
which is a set of ‘attributes’ that name the columns of the table. The ‘domain’ D(A) of
any attribute A is the set of values that a corresponding column entry may assume.

Target Data
Target Target Type Country
VN603 FFGO7 AUS
VC202 F/A-18 USA
VP337 F/A-18 AUS
VZ990 FFGO07 AUS
VA920 F-16 USA

Figure A1: A relational table.

Figure Al illustrates a relation called ‘Target Data’, which has the relation scheme
{'Target’, ‘Target Type’, ‘Country’}. Notice that the relation scheme is a set, so that the
ordering of the columns is irrelevant. The names ‘Target’, “Target Type, and ‘Country’
are attributes. The domain of ‘Target Type’, for instance, is a set that includes the
values ‘FFGO07’, 'F/A-18’, and ‘F-16’, among others. Notice that so-called relational
database systems do not fully support the relational model, because they do not
properly represent domains.

An ‘R-tuple’ t is a function from the relation scheme R to the corresponding domains of
the attributes forming R. This mapping can be restricted from the relation scheme R to
any subset X of R, and the X-tuple so specified is usually denoted as t[X]. A relation r
with relation scheme R is then defined to be a set of R-tuples.

In Figure Al, each row is a tuple on the relation scheme (Target’, ‘Target Type’,
‘Country’}. The relation is a set of such tuples, so the order in which the tuples are
displayed has no significance. Restricting the last tuple to relation scheme {‘Target’,
‘Country’} produces the tuple in Figure A2.

I VA920 | USA |

Figure A2: The restriction of the last tuple.

This definition can be restated in an alternative and equivalent form, by describing a
relation r as a subset of the Cartesian product of the domains D(A) associated with the
attributes A forming the relation scheme R.

23

DSTO-TR-0936

24

By definition, all the tuples t in a relation y must be distinct. Consider some subset X of
the relation scheme R for which all X-tuples {[X] are unique:Vz,,z; € res[X]#¢,[X].
This is trivially true for X=R, so there must always be at least one such subset for every
possibly relation. In addition to this, the relation schemes of most relations will be one
or more proper subsets X c R that satisfy this property. Any such a set X for which all
X-tuples are distinct is called a ‘superkey’ of the relation. If the superkey X also has the
property that removing any attribute from X leaves a set of attributes Z that is not a
superkey, then X is said to be a ‘key’ of relation r.

For example, the relation of Figure A1l has no rows with the same value for both the
‘Target’ and ‘Target Type’ attributes, so {‘Target’, ‘Target Type'} is a superkey of the
‘Target Data’. However, removing ‘Target Type’ produces the set {'Target’}, and no
two values for this attribute are repeated. Therefore, {‘Target’, ‘Target Type'} is not a
key. In fact, the set containing the single attribute ‘Target’ is the only key of relation
‘Target Data’. This means that the value of ‘Target’ can be used to uniquely identify
any tuple in the relation.

In general, there may be more than one key to a relation, and usually one of them will
be designated as the ‘primary key’. It is conventional to underline the set of attributes
forming the primary key, as was the case in Figure Al.

A relational database scheme is a set of relation schemes §={R |i=1...,n} together
with a set of integrity constraints C . An instance of this database scheme is a database,
defined to be a set of relations s={r, |i=1,...,n} for which the relation scheme of each
relation r, € s is R, € S and that together satisfy the integrity constraints C.

A.2. Some Integrity Constraints.

Various kinds of integrity constraints can be defined on the database scheme. The
‘entity integrity constraint’ specifies that no primary key can contain the null value,
because this would violate the property that every tuple can be identified by its
primary key value. ‘Key integrity’ constraints demand that all candidate keys be
unique for every tuple of the relation. Referential integrity constraints indicate that
tuples of one relation should refer to an existing tuples in another, and are specified in
terms of foreign key relationships.

Consider two relations r,es and r,es having relation schemes R, €S and R;€S,
respectively, and suppose that the primary key of relation r; is the set of attributes
Y C R;. A set of attributes X c R, is said to be a ‘foreign key’ of r, if two conditions are
met. Firstly, X must have the same set of domains as the primary key Y of r,.
Secondly, for each non-null tuple ¢, €r,, there must exist some tuple ¢,er, with
LIX1=1,[Y].

For example, consider a relation ‘Vessels’ that stores information about the name,

pennant number, and class of each ship. Because in this case each ship can be identified
by either name or pennant number, there are two candidate keys, and either of these

DSTO-TR-0936

could be selected as the primary key. A second table ‘Ship Data’ lists the type of each
ship class.

It is sensible to demand that that all ship classes have a ship type recorded for them. To
enforce this, any ship class specified in ‘Vessels’ should be first recorded as a ship class
in the ‘Ship Data’ relation. That is, the ‘Ship Class’ attribute of ‘Vessels’ is a foreign key
referring to the ‘Ship Data’ relation. According to convention, this referential integrity
constraint is indicated in the database scheme of Figure A3 by the directed arc
connecting the foreign key ‘Ship Class’ of ‘Vessels’ to the key ‘Ship Class’ of the
referred relation ‘Ship Data’.

Vessels

Ship Name l Pennant Number | Ship Class

Ship Data
Ship Class | Ship Type

Figure A3: A small database scheme with a referential integrity constraint.

Notice also that a foreign key can refer back to its own relation; this can occur when a
relation contains two attributes that have the same domain. While most relational
database systems enforce entity and key integrity, few support foreign key
relationships, and so it is usually left up to the applications layer to ensure referential
integrity.

Databases will typically require other kinds of constraints to preserve their integrity.
Attribute constraints include such things as specification of whether null values are
allowed in the column, and this is available in most relational database systems. More
general relationship structural constraints, of which referential integrity constraints are
a special case, may be required. Subset and superset constraints qualify the
relationships between various specialisations and generalisations of entities.

Such semantic integrity constraints are supported to varying degrees by different
relational database systems. For instance, some systems provide the ability to declare
static constraints as assertions. For example, a constaint to specify that ship targets
might appear something like the statement below.

ASSERT ShipConstraint ON Targets, ShipTargets
AS Targets.Target = ShipTargets.Target WHERE Targets.TargetType = ‘Ship’;

Note that this is not necessarily syntactically correct for any particular relational
systemy; it is merely intended to illustrate the general idea. Some systems also provide
trigger mechanisms to perform some specified procedure when a condition is met, and
this can be used to maintain semantic integrity.

DEFINE TRIGGER ShipTrigger ON ShipTargets, Targets
AS ShipTargets.Target NOT IN Targets.Target

25

DSTO-TR-0936

INSERT INTO Targets(Target, TargetType) VALUES (ShipTargets.Target, ‘Ship’);

Again, the example is not indicative of the syntax of any particular system that
supports such a mechanism.

A.3. The Relational Algebra.

The relational algebra is a formal definition of operations that manipulate entire
relations. Each relational operator performs an action on some number of argument
relations, and produces a new relation as its result. A relation is defined to be a set of
tuples, so the first operations that can be included are set operations such as union,
intersection, set difference, and Cartesian product. Other operations such as selection,
projection, and join were specifically developed within the theory of relational
databases.

The select operator is used to single out the subset of the tuples in a relation that satisfy
a given boolean condition, and is denoted as 6, (relation) . For example, to select the
targets from the ‘Target Data’ table of Figure Al that belong to Australia, the operation

O coumy—avs (TargetData) would be used. The relation produced by this operation is
illustrated in Figure A4.

Target Target Type Country

VN603 FFG07 AUS

VP337 F/A-18 AUS

VZ990 FFGO07 AUS

Figure A4: The result of the selection operator.

The projection operator, denoted as T . (relation), is defined when the set of

attributes is a subset of the relation scheme of the specified relation. The result is the set
of distinct tuples produced by restricting the tuples of the argument relation to the
named attributes. As an example, the projection operator i emype, counny (TargetData)

produces the relation of Figure A5.

Target Type Country
FFGO07 AUS
F/A-18 USA
F/A-18 AUS
F-16 USA

26

Figure A5: The result of a projection operator.

The join operator is used to connect information disseminated across several tables.
The join operator is denoted! as relation, ® o,y relation,, and produces as its result the

set of tuples from the Cartesian product of the two argument relations that satisfy the
given join condition. For example, consider the first relation ‘Aircraft Data’ in Figure

! Note that the ® symbol used here is not the standard notation; the more usual bowtie symbol was not
available in preparing this document.

DSTO-TR-0936

A6, and again the relation of Figure Al. The result of the join operator
TargetData ® AircraftData is illustrated as the second relation of Figure A6,

TargetType=Aircraft Type

overleaf.

Aircraft Data
Aircraft Type Category
F/A-18 F
F-16 F
F/A-18 A

Target | Target Type | Country | Aircraft Type | Category
[vC202 | F/A8 USA F/A-18 F
VC202 F/A-18 USA F/A-18 A
VP337 F/A-18 AUS F/A-18 F
VP337 F/A-18 AUS F/A-18 A
VA920 F-16 USA F-16 F

Figure A6: Another relation and the result of a join.

This is an example of an equijoin, in which the join condition is a simple equality
requirement. Notice that two identical columns appear in the result; one of these can be
eliminated using a projection operator. In this case, the combined join and projection
would be expressed in the relational algebra as
TC gt TargetType Country Category (TargetData @ argerTypeAircrafiType AircraftData), which produces instead a

relation without the redundant ‘Aircraft Type’ column.

This composition of equijoin and projection extremely common, and as a result, is
specially defined as the natural join operator, denoted as relation, ®relation,. The
implied join condition is equality between foreign keys of each relation that refer to the
other relation.

27

DSTO-TR-0936

28

Appendix B. An Overview of Object-Role Modelling.

The ORM diagram is a graphical language typically used to express the conceptual
structure of a database system, and it is within this context that it will be described
here. Each real-world concept or object is termed an ‘entity’, and a set of related entities
is an ‘entity type’, which is indicated on the diagram by an ellipse containing the name
of the entity type. Entities are interrelated through ‘fact types’, each of which is
comprised of some number of conforming ‘facts’. Individual entities and facts are not
explicitly represented on the diagram; instead they are organised into sets of related
entities and structurally similar facts. For example, it might be asserted that pilots
might fly aircraft.

There is a distinction between a real-world object and the way in which it might be
encoded as a data value within the system. This is embodied in ORM by using a ‘label
type’, which is indicated by a broken ellipse, to define the set of data values that will be
used to uniquely identify each entity in a related entity type. Pilots might be identified
by their names, and aircraft identified by aircraft numbers, for instance.

Any fact type is composed of a number of roles, which are drawn as boxes on the
diagram and connected to the relevant entity type to indicate that at least some of the
entities forming that entity type can play this role. The ‘arity” of a fact type is the
number of roles that it contains: on an ORM diagram, a sequence of n contiguous role
boxes describes an n-ary fact type. Figure Bl illustrates a simple relationship between
two entity types ‘Pilot’ and ‘Aircraft’, which are to be identified using ‘Pilot Name’ and
‘Aircraft Number’, respectively; all the fact types here are binary.

r1: .. flies ../ .. is flown by ..
r2: .. is identified by .. / .. identifies ..

13: .. has identitier .. / .. belongs to ..

7 Aircraft
A Number '/'

Figure B1: Pilots and Aircraft.

Arrows are used to indicate the existence of a uniqueness constraint on a given role or
set of roles. This means that any combination of entities can appear in the set of roles
spanned by the uniqueness constraint at most once. The uniqueness constraints on fact
type ‘12’ together describe a 1:1 relationship between pilots and their names. On the
other hand, the single uniqueness constraint spanning both role boxes of ‘rl” is the
weakest possible constraint, allowing any combination of pilot and aircraft in an m:n

DSTO-TR-0936

mapping. Because certain uniqueness constraints clearly imply other, weaker,
constraints, only the strongest constraints are usually shown on the diagram.

Figure B2 represents a more convenient form of this first diagram. Here, the label types
used to identify corresponding to each entity type are indicated in parentheses
underneath the name of that entity type. In many cases, the label type is omitted
altogether.

+—>
Pilot Aircraft
{Pilot Name) {Aircraft Number)
il

Figure B2: An abbreviated and equivalent representation.

Suppose now that pilots are assigned to a specific airbase. This introduces a new entity
type ‘Airbase’” which might be identified by an airbase name (note that airbase names
and pilot names are distinct label types). Each airbase might have many pilots assigned
to it, so this represents a 1:m relationship. Figure B3 shows the new schema diagram.

Aircraft
(Aircraft Number)

Pilot

(Pilot Name) r2: . is assigned to .. / .. houses ..

Airbase
(Airbase Name)

Figure B3: Some more constraints.

A role is said to be ‘mandatory’ (or “total’) if every entity in the connected entity type
must participate. This is indicated on the diagram by placing a heavy dot where the
connector meets the entity type, as in Figure B4. Here, each pilot must be stationed at
an airbase (together with the uniqueness constraint on ‘r2’, this means that every pilot
is stationed at exactly one airbase).

Aircraft
(Aircraft Number)

Pilot
(Pilot Name}

Airbase
(Airbase Name)

Figure B4: Every pilot must be stationed at a unique airbase.

29

DSTO-TR-0936

30

It is also possible to connect more than one role connector to the same mandatory role
dot to form an explicit role disjunction; this indicates that at least one of the applicable
roles must be played by every entity in the entity type. Figure B5 instead demands that
every pilot must either fly some aircraft or be assigned to some particular airbase, or
both.

Aircraft
(Aircraft Number)

<>
Airbase
(Airbase Name)

Figure B5: An explicit role disjunction.

Pitot
(Pilot Name)

Ternary fact types are also possible. Figure B6 is results from the requirement that the
number of hours each pilot has spent flying any aircraft is to be recorded. That is, the
combination of pilot and aircraft functionally determines a time in hours.

Pitot Aircraft Flying Time
(Pilot Name) (Aircraft Number) (Hours)

Figure B6: A ternary relationship.

Note that the uniqueness constraint spans two of the three roles that form this fact
type. In general, an n-ary fact type should have no uniqueness constraints that span
fewer than n-1 roles; otherwise, the fact type can be split into several fact types of lower
order.

It is often convenient to represent this kind of structure by using a ‘nested fact type’ to
objectify the relationship between pilot and aircraft. In doing so, each combination of
pilot and aircraft is treated as an entity in its own right. Note that the nested fact type
itself must always have a uniqueness constraint spanning all of its roles; otherwise the
entire structure could be decomposed. The ORM diagram of Figure B7 is equivalent to
that of Figure B6.

Pilot
(Pilot Name)

Flying Time
(Hours)

Aircraft
(Aircraft Number)

Figure B7: A nested fact type.

DSTO-TR-0936

Another feature of ORM is its ability to represent subtype/supertype relationships. An
arrow connects the subtype to its generalisation, and one or more fact types are
connected to the supertype to define the specialisation. Figure B8 illustrates two
subtypes ‘Surface Vessel’ and ‘Submarine’ of an entity type ‘Vessel, with the
membership of each subtype defined using the fact type that assigns to each vessel a
‘Type’. The label type “Type Code’ consists of the two values ‘surface’ and submarine.

Each subtype plays different roles; otherwise there would be no reason for introducing
the subtype in the first place. Any roles that all subtypes may play would be attached
to the supertype, while each subtype is connected to roles that are specific to that
subtype. Here, the primary radar is recorded for surface vessels, while submarines
possess a primary sonar system instead.

{surf, sub}

Vesse!
(Pennant#)

Type
{Type Code)

Primary Radar Primary Sonar
(Radar Code) (Sonar Code)

Figure B8: A simple subtype structure.

Surface Vessel = Vessel of type ‘surf’
Submarine = Vessel of type ‘sub’

Note that subtypes may be further specialised; for instance, surface vessels might be
divided into destroyers and frigates if different roles are played by each. While this
example illustrates a simple partitioning of vessels into either one subtype or the other,
it is also possible to construct type hierarchies in which a subtype might have multiple
supertypes.

Numerous other kinds of constraints can also be expressed on the ORM diagram,
including equality, subset, uniqueness, and exclusion constraints that operate between
fact types, occurrence frequency constraints and entity type constraints. Most of these
are beyond the scope of this overview; the reader is instead referred to [16] for a more
complete discussion.

31

DSTO-TR-0936

32

Appendix C. From ORM to a Relational Schema

The ORM diagram is a conceptual description of the structure of a universe of
discourse. Once a design is finalised, the high-level description must be somehow
implemented using the kinds of database systems that are currently available. In
particular, relational systems of one form or another still dominate the database
market, 5o it is natural to consider implementation as a relational database scheme.

The method by which the fact types of an ORM schema are grouped to form relational
tables is called the Optimal Normal Form (ONF) algorithm. The result is a minimal set
of relations that has no repeating attributes, no redundancy or update anomalies, and
no dangling tuples. That is, the ONF algorithm yields a relation scheme in fifth normal
form and having fewest relations.

The ONF algorithm is very simple. Each fact type with a composite key is implemented
as a single table. All fact types with simple keys attached to a common object type are
grouped into a single table, with the attribute corresponding to this object type as the

key.
4—>
A B
[T

Tablel

A|B

Figure C1: A fact type with a composite key.

Figure C1 shows a fact type having a composite key, so a single relation with attributes
corresponding to the two object types is generated. Figure C2 illustrates several fact
types having as their keys a single common object type, they are all grouped into the
one table. Because the role box connected to object type ‘A’ of the lower right fact type
is not mandatory, the corresponding ‘E’ column of the table stipulates that null values
are permitted.

8
(Bname) {Dname)

A
(Aname)

Table2
Al B I C | D IEop

Figure C2: Grouping simple keys into a relation.

DSTO-TR-0936

Binary fact types with two simple keys represent a one-one relationship between the
involved entities. The usual way of handling this is to group the fact type into a table
with other fact types connected to the entity type for which the corresponding role is
mandatory. Figure C3 illustrates this.

+> <44 <>
s L H orame 2| L o
(Aname) (Bname) (Dname)

Table Table 2
B | A]cC clo

Figure C3: Grouping with the mandatory role.

If instead the role of entity type ‘C’ were mandatory, then the fact type having two
simple keys could be grouped either way. A nested fact type, in which each fact is itself
considered to be an object, is illustrated in Figure C4. The nested fact type is treated the
same as any other fact type, except that it is represented in its relations by the
combination of its defining object types.

B
(Bname)
<>
| D
(Dname)

Table1
A LB [Cop|Dop

Figure C4: Handling nested fact types.

Relational systems provide no direct support for subtype hierarchies. Essentially, there
are two ways to handle the subtype constraints of an ORM diagram: either the
hierarchy is collapsed back into the base object type, or separate tables are created for
each subtype. Figure C5 shows a simple subtype hierarchy, the result of collapsing
these subtypes back into the base, and the table this produces.

33

DSTO-TR-0936

34

Figure C5: Collapsing a subtype hierarchy and the table it produces.

Additional assertions or triggers are required if the subtype relationship is to be
properly enforced in the relational database. If instead separate tables were created for
each subtype, the result would be the three tables of figure C6. Notice that the
referential integrity constraints together capture the subset relationship, but some form
of triggers or assertions would be required for the relationship that defines the

subtype.

Tablet Table2 Tabled
A | D B | E c | F
L S

Figure C6: Separate tables for each of the subtypes.

Each approach has its advantages and disadvantages; the first option reduces the
number of tables that are generated, but may produce much larger tables that are full
of null values. In practice, it is common for a combination to be used, even within the
same subset hierarchy.

DSTO-TR-0936

Appendix D. An Example Translator Specification.

The example of this section illustrates a translator for two hypothetical message
formats. While none of the message types described are directly taken from any real
message formats, they accurately depict features typically seen in both the OTH-T Gold
[26] and ADFORMS standards.

D1. An Input Message Format.

Every message type consists of a number of smaller units called ‘sets’; in turn, each set
is composed of some number of fields that contain simple data values. All message
types share the same first and last sets, named ‘MSGID’ and ‘ENDAT’, respectively.
The "MSGID’ set contains a field naming the message type, another giving the name of
the sender, and one each for the position of the sender and the date and time at which
the message was sent. All of these fields are mandatory.

MSGID / Message Type / Sender Identification / Position / Date-Time //

The ‘ENDAT’ message indicates that the end of the message has been reached. It also
contains a number identifying the message, although it is not needed in this example.

ENDAT / Message Number //

The air report ‘AIRREP’ message type consists of a ‘MSGID’ set with the message type
field containing the ‘AIRREP’ keyword, followed by a repeating group containing two
the ‘AIRCRAFT’ and ‘POSITION’ sets, and finally ending with the ‘ENDAT’ set. The
repeating group allows details about several aircraft to be provided within the same
message.

The ‘AIRCRAFT’ set specifies a mandatory target number assigned to the aircraft, an
optional aircraft type an optional aircraft category, and a mandatory country of origin.
A special value indicates that the country owning the aircraft is not known.

AIRCRAFT / Target Number / Aircraft Type / Aircraft Category / Country //

The ‘LOCATION’ set conveys the bearing and direction of the target specified in the
preceding set from the sender of the message, at the time when the message was sent.

LOCATION / Bearing / Direction //

The ‘SEAREP’ message contains information about ship targets, both surface and
submarine. It consists of a ‘MSGID’ set followed by a repeating group containing a
‘VESSEL’ set and a ‘LOCATION' set, with an ‘ENDAT’ set to indicate that the message
is finished. The ‘VESSEL’ set defines the target number, giving the pennant number
and name of the vessel, the ship’s class, and its country of origin. The target number
and country are mandatory, and the ship type must be given in the absence ship name,
pennant number, and ship class.

VESSEL / Target Number / Pennant Number / Ship Name / Ship Class / Country //

35

DSTO-TR-0936

36

The ‘HOSTCONT’ message type describes engagements with targets. It consists of the
‘MSGID’ set where the message identifier field contains '"HOSTCONT’, followed by a
repeating group containing the 'ENGAGE' set and the "TLOCATION' set, and finally the
‘ENDAT’ set. Note that this message type is highly abbreviated; in a real message
format a great deal more information about the engagement would be represented.
Here, the ‘ENGAGE’ set contains a mandatory target number and a value to indicate
the type and outcome of the engagement.

ENGAGE / Target Number / Engagement Type / Engagement Result //

Ideally, any target listed in a ‘'HOSTCONT’ message will have appeared previously in
some ‘AIRREP’ or ‘SEAREP’ message that provides details about the aircraft or ship.
Nonetheless, the translator will be able to cope if messages are presented to it out of
order.

In summary, the input message format consists of the three message types ‘AIRREP’,
‘SEAREP’, and "HOSTCONT". The ‘AIRREP’ message type assumes the form

MSGID / AIRREP / Sender ldentification / Position / Date-Time //
AIRCRAFT / Target Number / Aircraft Type / Aircraft Category / Country //
LOCATION / Bearing / Direction //

ENDAT / Message Number //

where the two middle sets form a repeating group. The complete ‘SEAREP’ message
type
MSGID / SEAREP / Sender Identification / Position / Date-Time //
VESSEL / Target Number / Pennant Number / Ship Name / Ship Class / Country //
LOCATION / Bearing / Direction //
ENDAT / Message Number //

uses a ‘VESSEL’ set in place of the ‘AIRCRAFT" set to instead convey information
about a ship. Finally, the ‘'HOSTCONT’ message type
MSGID / HOSTCONT / Sender Identification / Position / Date-Time //
ENGAGE / Target Number / Engagement Type / Engagement Result //
LOCATION / Bearing / Direction //
ENDAT / Message Number //

contains a list of information about engagements with various targets.

The basic information about targets that this message format represents is shown in
Figure D1. A ‘target’ is conceptually an aircraft or ship as perceived by the unit that
observes and reports it, so that different target numbers may be allocated to the same
vessel or aircraft by different observing units. The combination of the sender and the
target number uniquely identifies the observation. If only one unit is to be connected
through the translator, then target number alone would be sufficient.

DSTO-TR-0936

Target
Number

Unit
Identifier

Target Type
{ship. aircralt}

Pennant

Aircraft
Type

Aircraft
Category

Figure D1: Part of the structure of the input message format.

Note that the mandatory role constraints on fact types involving aircraft and ship
targets will enforce the requirement that this data be provided before the target can be
described in a "HOSTCONT' message. To permit the ‘HOSTCONT’ message to be
received before ‘AIRREP’ or ‘SEAREP’ messages provide details about the target, these
constraints should be relaxed.

Whenever a target is reported, the bearing and distance from the reporting unit is
recorded. The position of the observer is contained in the ‘MSGID’ set that precedes the
list of targets. Assuming that no object can be in more than one location at any
moment, the combination of sender and date-time uniquely determines its position.
Likewise, the combination of target and date-time should uniquely determine its
bearing and distance, remembering here that target is a combination of a target number
and the name of the reporting unit.

Proceeding along these lines would yield a structure that has two nested entities, one
for the combination of unit identifier and date-time, and the other representing the
combination of target and date-time. In addition, every date-time value recorded for a
particular target must be one of the date-time values that are recorded for the specific
unit identifier that reported the target. This qualified subset constraint, marked with *
in Figure D2, is difficult to capture.

Bearing

<>
Geographica!
Position /1 I\ I} 1.) ¢y

Figure D2: One way of representing location information.

Distance

37

DSTO-TR-0936

38

A simpler model can be formulated by considering the position of the observer unit to
be an attribute of the target rather than the observer itself. This is like repeating the
value provided in the header for each target listed in the message, effectively
collapsing the left-hand side of Figure D2 into the right. This corresponds to an
augmentation of the functional dependency between unit identifier, date-time and
geographical position with the additional target number attribute. The resulting
structure is shown in Figure D3, and this diagram also includes the engagement
information.

Bearing

Engagement
Type

Engagement
Outcome

Geographic
Position

Date-Time

Figure D3: Engagement and location information.

In database terms, the cost of doing this is an increase in the table size, because the
position value will be repeated for every target in a message, instead of being recorded
once for the observer unit. However, there is no longer any need to represent the
difficult subset constraint.

The incoming message stream is described by the combined structures of Figures D2
and D3. The corresponding relational schema illustrated in Figure D4 represents the
various tables that will be injected into the database, as messages are received.
Additional membership constraints resulting from the subtype relationship between
“Targets’, ‘Aircraft Targets’, and ‘Ship Targets’ are not shown. Another constraint is
also needed to enforce that a non-null value is provided for at least one of the columns
‘Pennant Number’ and ‘Ship Name’ of ‘Naval Targets’.

Normally, all of the bearings, distances, observer positions and engagement data
shown in figure A15 would be grouped into the same table, with the engagement type
and outcome columns optional. The equality constraint involving engagement type
and outcome is more easily captured by splitting the structure across the two tables
‘Target Locations’ and ‘Engagements’, with a subset constraint from the key of the
second to that of the first. The engagement type and outcome columns are then
mandatory in ‘Engagements’, thereby enforcing the equality requirement.

DSTO-TR-0936

Targets

Target Number [Observer l Target Type l Country
b AKX !

Aircraft Targets

Target Number | Observer IAircraft Type | Aircraft Category

Naval Targets
Target Number | Observer I Pennant Number OP l Ship Name OP | Ship Class OP

Target Locations

Target Number IObserver l Date-Time IPosition l Bearing |Distance

T

T vy T

Engagements

Target Number | Observer I Date-Time IEngagement Type l Outcome

Figure D4: Information received from the input message stream.

Reception of an ‘AIRREP’ message will result in new information in the form of the
‘Targets’, ‘Target Locations’ and the ‘Aircraft Targets’ tables. Similarly, a ‘SEAREP’
message results in additions to tables ‘Targets’, ‘Target Locations” and ‘Naval Targets’.
A "HOSTCONT’ message will generate appropriate information in the ‘Targets’,
‘Target Locations’ and ‘Engagements’ tables. If any integrity constraints are violated by
the incoming information, the message should be rejected with an error message
recorded in a log file, or perhaps displayed.

D2. Some predefined and scenario data.

In addition to the information received from the incoming message stream, some
predefined facts and useful scenario-dependent data might be available to the
translator. In essence, this will provide the glue that binds the information structure of
the input format to that of the output format. For instance, suppose that functions are
available to relate each date-time value to corresponding combinations of date and
time. The ORM diagram that expresses this is shown as Figure D5.

Figure D5: Relating date-time to separate data and time values.

39

DSTO-TR-0936

40

The position of the observer and the bearing and distance of a target relative to this
observer can also be used to compute the explicit position of the target. The
relationships between observer position, bearing, distance and target position are
shown in Figure D6. Also illustrated is the definition of position as a combination of
latitude and longitude.

Longitude

Figure D6: Distances, bearings, and positions of a target and its observer.

Suppose also that the aircraft category is known for each aircraft type, and that the
combination of aircraft category and country of origin is sufficient to determine a
suspicion code denoting the potential threat that the aircraft presents. This structure is
illustrated in Figure D7.

Figure D7: Predefined aircraft data.

Likewise consider predefined information about various ships that might appear in the
scenario. Suppose, for example, that pennant numbers are not necessarily unique, but
that the combination of pennant number and the owning country is sufficient to
identify any particular vessel. Suppose also that names of ships are globally unique.
Each ship belongs to a ship class, and every ship class belongs to a single category.
Furthermore, the category of a ship and its country of origin together determine a
suspicion code. This results in the ORM diagram of Figure D8.

Suspicion
Country Code

Pennant
Number

Figure D8: Predefined information about ships.

DSTO-TR-0936

Suppose also that it is possible to assign to each target a unique identifier, say by
defining a procedure to allocate consecutive numbers to each combination of target
number and observer. This leads to a structure as shown in Figure D9.

Target
Number

Unique
Identifier

Unit
Identifier

Figure D9: A unique identifier for each reported target.

The way in which engagement information is represented can vary widely between
different message formats, even between different message types that belong to the
same format. Suppose engagement type and outcome values can be combined with a
suspicion code to yield a coded description of the engagement, which might ultimately
be used by a composer to generate a simple sentence, say. Figure D10 illustrates this

relationship.
Engagement
Type
Engagement Suspicion
Outcome Code

Figure D10: Relating engagement information.

Description

The relational schema to store all of this predefined data appears in figure C11. Note
that this is a high-level view only, and does not specify how these tables will actually
be stored in the database. That is, there are an infinite number of rows in the ‘Relative
Position” and ‘Dates and Times’ relations, so they cannot be stored in the database as
explicit tables for any realistic application. New object-relational systems offer the
ability to represent stored procedures as columns in tables, which would make such
complications invisible to the translator engine. However, older purely relational
databases do not provide this service, so perhaps the engine itself should ultimately
recognise that some columns may actually represent a function that needs to be
invoked to access a required value. However, implementing this is not a simple task.

41

DSTO-TR-0936

42

Relative Position
Observer Position I Bearing | Distance | Target Position
Aircraft Aircraft Suspicion
Aircraft Type 1 Aircraft Category Country Aircraft Category ISuspicion Code
Ships v Dates and Times
Country l Pennant Number | Ship Name | Ship Class Date-Time l Date l Time
Ship Classes * Geographical Position
Ship Class IShip Category Position |Lamude| Longitude
Ship Suspicion EE 7 Target Identifiers
Country] Ship Category l Suspicion Code Target Number l Observer l Unique Id
: Engagement Data - St
Engagement Type l Qutcome] Suspicion Code | Description

Figure D11: The relational schema for storing the predefined data.

The relational tables of Figure D11 will form the component of the database that is
fixed in structure. Note that some applications will demand that the data in some of
these tables can be altered, but the relation schemes will normally remain unchanged.

D3. An Output Message Format.

The output message format will consist of a single message type, which is more
complex in structure than those of the input message format described earlier. In fact,
the output message format is modelled on the very complicated OTH-T Gold
CONTACT REPORT message.

The output message type contains a repeating group within another repeating group.
The outermost of these forms a list of targets, each of which must be identified by a
globally unique value. For each of these targets, the inner repeating group forms a list
of positions and optional engagement descriptions.
MSGID / CONTACT / Sender Identification //
TARGET / Unique Identifier / Name / Type / Category / Country / Suspicion Code //
POSITION / Latitude / Longitude / Date / Time //

ENGAGEMENT / Description //
ENDAT //

The ‘TARGET" set contains information about both naval and air targets. For a ship, the
‘Name’ field is the name of the ship, ‘Type’ contains the ship’s class, and ‘Category’
contains the ship’s category. For aircraft, the ‘Name’ field is empty, “Type’ contains the
aircraft type, and ‘Category’ is the aircraft category. In either case, the country of origin
and the suspicion code are mandatory.

DSTO-TR-0936

Each target has an associated list of positions (at least one must be provided), and
values must be provided for data, time, latitude and longitude. An optional description
of any engagement that occurred at this position may also be provided.

The conceptual schemata are not shown; Figure D12 illustrates a relational schema
describing the output message format. An alternative exists that has only two tables,
where an optional ‘Description’ column is added to the ‘Output Locations’ table to
allow the ‘Engagement Descriptions’ table to be removed.

Output Locations .
Uniqueld 1 Date l Time l Latitude l Longitude
1 i]

RS A

All Targets

Uniqueld l Name | Type]Categoryl Countr; I Suspickion Co&e

Engagement Descriptions .-~ /"
Unigueld l Date I Time Description

Figure D12: The relational schema of the output message format.
D4. The rules for translation.

The location of every target is provided in the incoming message stream as a bearing
and distance relative to the position of the observer. The output format requires that
target positions be given as a combination of latitude and longitude. The following rule
operates on the ‘Target Locations’ table provided by the incoming message stream,
using the predefined data tables ‘Relative Position’ and ‘Geographical Position’ to
produce a new table that contains the latitude and longitude of each target.
DEFINE FindAbsolutePosition AS
SELECT TargetNumber, Observer, Date-Time, Latitude, Longitude
FROM TargetsLocations, RelativePosition, GeograpicalPosition
WHERE TargetLocations.Position = RelativePosition.ObserverPosition
AND TargetLocations.Bearing = RelativePosition.Bearing
AND TargetLocations.Distance = RelativePosition.Distance
AND RelativePosition. TargetPosition = GeograpicalPosition.Position;
INSERT INTO TargetLocations1
VALUES $TargetNumber, $Observer, $Date-Time, $Latitute, $Longitude;
DELETE FROM TargetLocations
WHERE TargetNumber = $TargetNumber AND Observer = $Observer,
END

43

DSTO-TR-0936

The combined date-time field of the input message format also needs to be converted
into separate date and time values. At the same time, the following rule replaces the
target number and observer by a unique identifier.

DEFINE ModifyLocations AS
SELECT TargetLocations1.TargetNumber, TargetLocations1.Observer,
Uniqueld, Date, Time, Latitude, Longitude
FROM TargetsLocations1, DatesAndTimes, Targetldentifiers
WHERE TargetLocations1.Date-Time = DatesAndTimes.Date-Time
AND TargetLocations1.TargetNumber = Targetldentifiers. TargetNumber
AND TargetLocations1.Observer = Targetldentifiers.Observer,
INSERT INTO OutputLocations
VALUES $Uniqueld, $Date, $Time, $Latitute, $Longitude;
DELETE FROM TargetLocations1
WHERE TargetNumber = $TargetNumber AND Observer = $Observer,
END

The next few rules are all concerned with processing information about aircraft targets.
The first replaces the target number and observer combination by the unique identifier,
to constructs a new table that lists for each such target its type, category, and country of
origin.
DEFINE ProcessAirTargets AS
SELECT TargetNumber, Observer, Uniqueld, AircraftType, AircraftCategory, Country
FROM Targets, AircraftTargets, Targetldentifiers
WHERE Targets.TargetType = ‘Aicraft’
AND Targets.TargetNumber = Targetldentifiers.TargetNumber
AND Targets.Observer = Targetldentifiers.Observer
AND AircraftTargets.TargetNumber = Targets.TargetNumber
AND AircraftTargets.Observer = Targets.Observer, '
INSERT INTO AirTargets VALUES $Uniqueld, $AircraftType, $AircraftCategory, $Country,

DELETE FROM Targets WHERE TargetNumber = $TargetNumber AND Observer =
$Observer,

DELETE FROM AircraftTargets
WHERE TargetNumber = $TargetNumber AND Observer = $Observer,
END

One last rule uses predefined information about the suspicion code for an aircraft of a
given category and from a given country to derive the suspicion codes for each aircraft
target. The result is inserted into a table ‘All Targets’ that will also receive the results of
processing ship targets. Note that a null value is inserted into the column that will hold
the names of ships.

DEFINE CollateAirTargets AS
SELECT * FROM AirTargets, AircraftSuspicion

END

DSTO-TR-0936

WHERE AirTargets.Country = AircraftSuspicion.Country
AND AirTargets.AircraftCategory = AircraftSuspicion.AircraftCategory;
INSERT INTO AllTargets
VALUES $Uniqueld, NULL, $AircraftType, $AircraftCategory,
$Country, $SuspicionCode;
DELETE FROM AirTargets WHERE Uniqueld = $Uniqueld;

The rules for processing naval targets are more complicated, because the ship can be
identified either by its name or by a combination of pennant number and country of
origin. In addition, the ship category has to be derived once the ship’s identity is
unequivocally established.

DEFINE ProcessShipTargets AS

END

SELECT TargetNumber, Observer, Uniqueld, PennantNumber,
ShipName, ShipClass, Country
FROM Targets, NavalTargets, ShipClasses, Targetidentifiers
WHERE Targets.TargetType = ‘Aicraft
AND Targets.TargetNumber = Targetldentifiers. TargetNumber
AND Targets.Observer = Targetldentifiers.Observer
AND NavalTargets.TargetNumber = Targets.TargetNumber
AND NavalTargets.Observer = Targets.Observer;
INSERT INTO ShipTargets
VALUES $Uniqueld, $PennantNumber, $ShipName, $ShipClass, $Country;
DELETE FROM Targets WHERE TargetNumber = $TargetNumber
AND Observer = $Observer,
DELETE FROM ShipTargets WHERE TargetNumber = $TargetNumber
AND Observer = $Observer,

When the ship name is provided, this is used to look up the details of the vessel in the
‘Ships” and ‘Ship Classes’ tables. There is no need to explicitly require that the ship
name is not null, because this causes the first condition in the clause to fail anyway.
Also observe that the rest of the condition fails if the ship name does not appear in the

‘Ships’ table.

DEFINE ProcessNamedShips AS

SELECT Uniqueld, ShipName, Ships.ShipClass, Ships.Country, ShipCategory
FROM ShipTargets, Ships, ShipClasses
WHERE ShipTargets.ShipName = Ships.ShipName
AND Ships.ShipClass = ShipClasses.ShipClass;
INSERT INTO SeaTargets VALUES $Uniqueld, $ShipName,
$ShipClass, $ShipCategory, $Country;

45

DSTO-TR-0936

46

DELETE FROM ShipTargets WHERE Uniqueld = $Uniqueld;
END

The rule below processes ship targets for which the ship’s name is not given or does
not appear in the ‘Ships’ table, but the pennant number and country of origin are
provided and match an entry. Note that, as with the previous rule, the ship class and
country from the predefined table are used in preference to the values provided in the
incoming message.
DEFINE ProcessUnnamedShips AS
SELECT Uniqueld, ShipName, Ships.ShipClass, Ships.Country, ShipCategory
FROM ShipTargets, Ships, ShipClasses
WHERE ShipTargets.ShipName NOT IN (SELECT ShipName FROM ShipTargets)
AND ShipTargets.Country = Ships.Country
AND ShipTargets.PennantNumber = Ships.PennantNumber;
AND Ships.ShipClass = ShipClasses.ShipClass;
INSERT INTO SeaTargets VALUES $Uniqueld, $ShipName, $ShipClass,
$ShipCategory, $Country;
DELETE FROM ShipTargets WHERE Uniqueld = $Uniqueld,
END

Any rows remaining in the ‘ShipTargets’ table after both of these rules are applied
represent ships that cannot be properly identified. In this case, the ship class is used to
try to determine the ship category.

DEFINE UnidentifiedShip AS
SELECT Uniqueld, ShipClass, ShipCountry, ShipCategory
FROM ShipTargets, ShipClasses
WHERE ShipTargets.ShipClass = ShipClasses.ShipClass;

INSERT INTO SeaTargets VALUES $Uniqueld, NULL, $ShipClass, $ShipCategory,
$Country;
DELETE FROM ShipTargets WHERE Uniqueld = $Uniqueld;

END

When the ship class cannot be determined, an error condition exists, because the
output message format demands this information. One way of detecting this condition
would be to construct a query that excludes all tuples satisfied by the where-clauses of
the previous three rules, and then operates on the remainder. However, the query that
would result is distinctly unwieldy; a better approach uses the suggested priority
mechanism to examine the contents of the ‘Ship Targets’ table when the other rules are

already applied.
DEFINE ShipClassError :- ProcessNamedShips, ProcessUnnamedShips, UnidentifiedShip AS

SELECT Uniqueld FROM ShipTargets;
WRITE ErrorLogFile ‘Cannot determine ship class for target’ $Uniqueld \n’;

DSTO-TR-0936

DELETE FROM ShipTargets WHERE Uniqueld = $Uniqueld;
END

The processed ship information can now be inserted into the table that is to contain all
target information. At the same time, the predefined ‘Ship Suspicion” table supplies the
suspicion code for each ship target.
DEFINE CollateSeaTargets AS
SELECT * FROM SeaTargets, ShipSuspicion
WHERE SeaTargets.Country = ShipSuspicion.Country
AND SeaTargets.ShipCategory = ShipSuspicion.ShipCategory;
INSERT INTO AllTargets VALUES $Uniqueld, $ShipName, $ShipType, $ShipCategory,
$Country, $SuspicionCode;
DELETE FROM AirTargets WHERE Uniqueld = $Uniqueld;

END

The last part of the input message format to be considered is the engagement
information, which appears in the ‘Engagements’ table. The first thing to achieve is to
change the combination of target number and observer into the unique identifier, and
decompose the given date-time field into separate date and time values.

DEFINE MapEngamentldentifier AS
SELECT TargetNumber, Observer, Uniqueld, Date, Time, EngagementType, Outcome
FROM Engagements, Targetldentifiers, DatesAndTimes
WHERE Engagements.TargetNumber = Targetldentifiers.TargetNumber
AND Engagements.Observer = Targetldentifiers.Observer
AND Engagements.Date-Time = DatesAndTimes.Date-Time;
INSERT INTO Engagements1
VALUES $Uniqueld, $Date, $Time, $EngagementType, $Outcome;
DELETE FROM Engagements
WHERE TargetNumber = $TargetNumber AND Observer = $Observer;
END

Now the table of all targets must be consulted for its suspicion code field. Using this,
together with the predefined table ‘Engagement Data’, the required engagement
description value can be found by performing yet another natural join.
DEFINE DeriveEngagementDescription AS
SELECT Uniqueld, Date, Time, Description
FROM Engagements1, EngagementData, AllTargets
WHERE Engagements1.EngagementType = EngagementData.EngagementType
AND Engagements1.Outcome = EngagementData.Outcome
AND EngagementData.SuspicionCode = AllTargets.SuspicionCode
AND AliTargets.Uniqueld = Engagemements1.Uniqueld;

47

DSTO-TR-0936

INSERT INTO EngagementDescriptions VALUES $Uniqueld, $Date, $Time,
$Description;
DELETE FROM Engagements1 WHERE Uniqueld = $Uniqueld

END

The tables ‘Output Locations’, ‘All Targets’, and ‘Engagement Descriptions’ contain the
information that the composer can use to create output messages.
DEFINE SendLocationsTable AS
SELECT * FROM OutputLocations;
ACCEPT DummyComposer VALUES $Uniqueld, $Date, $Time, $Latitude, $Longitude;
DELETE FROM OutputLocations WHERE Uniqueld = $Uniqueld;
END
DEFINE SendAliTargets AS
SELECT * FROM AllTargets;
ACCEPT $Uniqueld, $Name, $Type, $Category, $Country, $SuspicionCode;
DELETE FROM AllTargets WHERE Uniqueld = $Uniqueld;
END
DEFINE SendDescriptions AS
SELECT * FROM EngagementDescriptions AS
ACCEPT $Uniqueld, $Date, $Time, $Description;
DELETE FROM EngagementDescriptions WHERE Uniqueld = $Uniqueld;
END

The composer is then responsible for interpreting these tables and building the
appropriate output message from them.

48

[4]

(5]

[6]

[7]

(8]

9]

[10]

[11]

(12]

DSTO-TR-0936

References.

Avo AV, Ullman J. D., “Principles of Compiler Design”, Addison-Wesley,
Reading MA, 1977.

Barrett W.A., Bates R. M., Gustafson D.A., Couch].D., “Compiler Construction”,
2nd Ed, Science Research Associates Inc, 1986.

Batini C., Lenzerini M., Navathe S.B., “A Comparative Analysis of
Methodologies for Database Schema Integration”, ACM Computing Surveys
Vol 18 No 4, 1986.

Bouguettaya A., Papazoglou M., King R., “On Building a Hyperdistributed
Database”, Information Systems, Vol 20 No 7, pp557-577, 1995.

Bowden F., “The ADF Joint Operations Simulation System”, Proc SimTecT 97,
pp441-446, 1997.

Bowden F., Gabrisch G., Davies M., “The ADF Joint Operations Simulation of
Air Defence C3I using the Distributed Interactive C3I Effectiveness (DICE)
Simulation”, Proc SimTecT 97, pp71-76, 1997.

Breuer, P. T., Bowen]. P., “A PREttier Compiler-Compiler: Generating Higher-
Order Parsers in C”, Software - Practice and Experience, Vol 25 No 11, pp1263-
1297, 1995.

Bright M\W., Hurson A.R., Pakzad S., “Automated Resolution of Semantic
Heterogeneity in Multidatabases”, ACM Trans Database Systems, Vol 19 No 2,
pp212-253, 1994.

Brookes W., Induska J., Bond A., Yang Z., “Interoperability of Distributed
Platforms: a Compatability Perspective”, Proc 2nd Int Conf on Open Distributed

Processing, pp67-78, 1995.

Buvac S., Fikes R., “A Declarative Formalism of Knowledge Translation”, Proc
1995 ACM CIKM Int Conf on Information and Knowledge Management, pp340-
347, 1995.

Cammarata S., Kameny L, Lender J., Replogle C., “A Metadata Management
System to Support Data Interoperability, Reuse, and Sharing”, Journal of
Database Management, Vol 5 No 2, pp30-40, 1994.

Cartwright D., “Building Bridges (Database Interoperability)”, Network Week
Vol 2 No 10, pp49-52, 1996.

49

DSTO-TR-0936

50

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Ceri S., Pelagatti G., “Distributed Databases: Principles and Systems”, McGraw-
Hill, NY, 1984.

Colomb R.M., Orlowska M.E., “Interoperability in Information Systems”,
Information Systems Journal Vol 5 pp37-50, 1994.

De Casto C. Grandi F., Scalas M.R., “Semantic Interoperability of
Multitemporal Relational Databases”, Proc 12" Int Conf on the Entity-
Relationship Approach, pp463-474, 1993.

Elmasri R., Navathe S., “Fundamentals of Database Systems”,
Benjamin/Cummings, Redwood City, Cal, 1989.

Gelfond, M., Przymusinska, H., Przymusinski, T., “The Extended Closed World
Assumption and its Relationship to Paralle]l Circumscription”, Proc 5 SIGACT-
SIGMOD Symp on Principles of Database Systems, pp133-139, 1986.

Johnson, V. M., Carlis, J. V., “Building a Composite Syntax for Expert System
Shells”, IEEE Expert, pp60-66, 1997.

Halpin T., “Conceptual Schema and Relational Database Design”, 2" Ed,
Prentice-Hall, 1994.

NASA Johnson Space Center, “NASA CLIPS Rule-Based Language”, Available
at http:// www siliconvalleyone.com/clips.htm.

Ram S., Barkmeyer E, “A Unifying Semantic Model for Accessing Multiple
Heterogeneous Databases in a Manufacturing Environment”, Proc 1st Int
Workshop on Interoperability in Multidatabase Systems, pp212-215, 1991.

Reid D.J, Davies M., “Towards a Gateway to Interconnect Simulations and
Operational C3I Systems”, Proc SimTecT 98, pp27-32, 1998.

Rusinkiewicz M.E., Sheth A.P., “Multidatabase Applications: Semantic and
System Issues”, Proc 18% Int Conf on Very Large Databases, 1992.

Sciore H., Siegel M., Rosenthal A., “Using Semantic Values to Falicitate
Interoperability among Heterogeneous Information Systems”, ACM Trans on
Database Systems, Vol 19 No 2, pp254-290, 1994. ‘

Takizawa M., Hasegawa M. Deen S., “Interoperability of Distributed
Information Systems”, Proc 1t Int Workshop on Interoperability in
Multidatabase Systems, pp239-242, 1991.

US Navy Center for Tactical Systems Interoperability, “Operational
Specification for Over-the-Horizon Targeting Gold”, Rev B Ch 2, 1996.

DSTO-TR-0936

Translating Deeply Structured Information

Darryn | Reid

(DSTO-TR-0936)

DISTRIBUTION LIST

AUSTRALIA
DEFENCE ORGANISATION

Task sponsor:
DGC3ID

S&T Program
Chief Defence Scientist)
FAS Science Policy
AS Science Corporate Management)
Director General Science Policy Development
Counsellor, Defence Science, London
Counsellor, Defence Science, Washington
Scientific Adviser - Policy and Command
Navy Scientific Adviser

~—

Scientific Adviser - Army
" Air Force Scientific Adviser
Director Trials

Aeronautical & Maritime Research Laboratory
Director

Electronics and Surveillance Research Laboratory
Director

Chief Information Technology Division

Research Leader Command & Control and Intelligence Systems

Research Leader Military Computing Systems

Research Leader Joint Systems Branch

Research Leader Advanced Computer Capabilities
Research Leader Command, Control and Communications
Head, Information Warfare Studies Group

Head, Software Systems Engineering Group

Head, Trusted Computer Systems Group

Head, Systems Simulation and Assessment Group

Head, C3I Operational Analysis Group

Number of Copies.

1 shared copy

1
Doc Control Sheet
Doc Control Sheet
1
1 copy of Doc Control Sheet
and 1 distribution list
1 copy of Doc Control Sheet
and 1 distribution list

1
1

1 copy of Doc Control Sheet
and 1 distribution list
1
1
1
1
Doc Control Sheet
1
Doc Control Sheet
Doc Control Sheet
Doc Control Sheet
1
Doc Control Sheet

DSTO-TR-0936

Head Information Management and Fusion Group

Head, Human Systems Integration Group

Head, C2 Australian Theatre

Head, Distributed Systems Group

Head C3I Systems Concepts Group

Head, Organisational Change Group

Task Manager

Author

Publications and Publicity Officer, ITD/ Executive Officer ITD

DSTO Library and Archives
Library Fishermens Bend
Library Maribyrnong
Library Salisbury
Australian Archives
Library, MOD, Pyrmont
US Defence Technical Information Center
UK Defence Research Information Centre
Canada Defence Scientific Information Service
NZ Defence Information Centre
National Library of Australia

Capability Systems Staff
Director General Maritime Development
Director General Aerospace Development

Army
ABCA Office, G-1-34, Russell Offices, Canberra
SO (Science), DJFHQ(L), MILPO, Enoggera, Qld 4051

Intelligence Program
DGSTA Defence Intelligence Organisation
Manager DIO Information Center

Corporate Support Program (libraries)
OIC TRS Defence Regional Library, Canberra

Universities and Colleges
Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering

Deakin University, Serials Section (M list)), Deakin University Library,

Senior Librarian, Hargrave Library, Monash University
Librarian, Flinders University

Other Organisations
NASA (Canberra)
AGPS
State Library of South Australia
Parliamentary Library, South Australia

Doc Control Sheet
Doc Control Sheet
1
Doc Control Sheet
1
Doc Control Sheet
1
2
1

N = =

1
Doc Control Sheet
2

= s N

Doc Control Sheet
Doc Control Sheet

4
Doc Control Sheet

[N r S—Y

OUTSIDE AUSTRALIA

Abstracting and Information Organisations
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts
Documents Librarian, The Center for Research Libraries, US

Information Exchange Agreement Partners
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and
Technology, US
SPARES

Total number of copies:

—) e ped

56

DSTO-TR-0936

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
Translating Deeply Structured Information CLASSIFICATION)
Document)
Title U)
Abstract)
4. AUTHOR(S) 5. CORPORATE AUTHOR
Darryn | Reid Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108 Australia
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-0936 AR-011-201 Technical Report February 2000
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF
N9505/17/119 840786 DGC3ID 58 REFERENCES
26
13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY
N/A Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS

Command Control Communications and Intelligence
Relational Databases
Machine Translation

19. ABSTRACT

The problem of interfacing Command, Control, Communications and Intelligence (C3I) systems and
applicable simulations is considered. In particular, this document focusses on the requirements and
design of an engine to support translation between systems expecting to communicate using dissimilar
message languages.

This engine interprets a given behavioural specification written in a high-level declarative language built
around standard SQL. It is therefore natural and convenient to consider implementation using an
appropriate relational database system to facilitate data storage and manipulation.

Beginning with an overview of the broader context and background, the discussion considers the way in
which the semantic structures of the input and output languages can be captured using a conceptual
modeling language. Such models can be readily mapped into a relational schema, and the actions that a
translator should perform are easily expressed using SQL. Each of these actions must occur when a
given set of conditions is satisfied; the engine is therefore a specialised rule-based system that
manipulates the tuples of a relational database.

Page classification: UNCLASSIFIED

